More permutation polynomials with differential uniformity six

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

More Classes of Complete Permutation Polynomials over $\F_q$

In this paper, by using a powerful criterion for permutation polynomials given by Zieve, we give several classes of complete permutation monomials over Fqr . In addition, we present a class of complete permutation multinomials, which is a generalization of recent work. Index Terms Finite field, Complete permutation polynomials, Walsh transform, Niho exponents.

متن کامل

Permutation polynomials and their differential properties over residue class rings

This paper mainly focuses on permutation polynomials over the residue class ring ZN , where N > 3 is composite. We have proved that for the polynomial f(x) = a1x 1 + · · · + akx with integral coefficients, f(x) mod N permutes ZN if and only if f(x) mod N permutes Sμ for all μ | N , where Sμ = {0 < t < N : gcd(N, t) = μ} and SN = S0 = {0}. Based on it, we give a lower bound of the differential u...

متن کامل

Permutation Polynomials modulo m

This paper mainly studies problems about so called “permutation polynomials modulo m”, polynomials with integer coefficients that can induce bijections over Zm = {0, · · · , m−1}. The necessary and sufficient conditions of permutation polynomials are given, and the number of all permutation polynomials of given degree and the number induced bijections are estimated. A method is proposed to dete...

متن کامل

On inverse permutation polynomials

We give an explicit formula of the inverse polynomial of a permutation polynomial of the form xrf(xs) over a finite field Fq where s | q − 1. This generalizes results in [6] where s = 1 or f = g q−1 s were considered respectively. We also apply our result to several interesting classes of permutation polynomials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science China Information Sciences

سال: 2017

ISSN: 1674-733X,1869-1919

DOI: 10.1007/s11432-017-9118-5